Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.744
Filtrar
1.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1869(4): 159470, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38423452

RESUMO

Hyaluronan is an important extracellular matrix component, with poorly documented physiological role in the context of lipid-rich adipose tissue. We have investigated the global impact of hyaluronan removal from adipose tissue environment by in vitro exposure to exogenous hyaluronidase (or heat inactivated enzyme). Gene set expression analysis from RNA sequencing revealed downregulated adipogenesis as a main response to hyaluronan removal from human adipose tissue samples, which was confirmed by hyaluronidase-mediated inhibition of adipocyte differentiation in the 3T3L1 adipose cell line. Hyaluronidase exposure starting from the time of induction with the differentiation cocktail reduced lipid accumulation in mature adipocytes, limited the expression of terminal differentiation marker genes, and impaired the early induction of co-regulated Cebpa and Pparg mRNA. Reduction of Cebpa and Pparg expression by exogenous hyaluronidase was also observed in cultured primary preadipocytes from subcutaneous, visceral or brown adipose tissue of mice. Mechanistically, inhibition of adipogenesis by hyaluronan removal was not caused by changes in osmotic pressure or cell inflammatory status, could not be mimicked by exposure to threose, a metabolite generated by hyaluronan degradation, and was not linked to alteration in endogenous Wnt ligands expression. Rather, we observed that hyaluronan removal associated with disrupted primary cilia dynamics, with elongated cilium and higher proportions of preadipocytes that remained ciliated in hyaluronidase-treated conditions. Thus, our study points to a new link between ciliogenesis and hyaluronan impacting adipose tissue development.


Assuntos
Cílios , Ácido Hialurônico , Camundongos , Humanos , Animais , Ácido Hialurônico/metabolismo , Cílios/metabolismo , PPAR gama/metabolismo , Hialuronoglucosaminidase/genética , Hialuronoglucosaminidase/metabolismo , Diferenciação Celular/fisiologia , Tecido Adiposo Marrom/metabolismo , Lipídeos
2.
Int J Biol Macromol ; 263(Pt 2): 130311, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38403220

RESUMO

The Brazilian scorpion Tityus melici, native to Minas Gerais and Bahia, is morphologically related to Tityus serrulatus, the most medically significant species in Brazil. Despite inhabiting scorpion-envenomation endemic regions, T. melici venom remains unexplored. This work evaluates T. melici venom composition and function using transcriptomics, enzymatic activities, and in vivo and in vitro immunological analyses. Next-Generation Sequencing unveiled 86 components putatively involved in venom toxicity: 39 toxins, 28 metalloproteases, seven disulfide isomerases, six hyaluronidases, three phospholipases and three amidating enzymes. T. serrulatus showed the highest number of toxin matches with 80-100 % sequence similarity. T. melici is of medical importance as it has a venom LD50 of 0.85 mg/kg in mice. We demonstrated venom phospholipase A2 activity, and elevated hyaluronidase and metalloprotease activities compared to T. serrulatus, paralleling our transcriptomic findings. Comparison of transcriptional levels for T. serrulatus and T. melici venom metalloenzymes suggests species-specific expression patterns in Tityus. Despite close phylogenetic association with T. serrulatus inferred from COI sequences and toxin similarities, partial neutralization of T. melici venom toxicity was achieved when using the anti-T. serrulatus antivenom, implying antigenic divergence among their toxins. We suggest that the Brazilian therapeutic scorpion antivenom could be improved to effectively neutralize T. melici venom.


Assuntos
Animais Venenosos , Venenos de Escorpião , Toxinas Biológicas , Camundongos , Animais , Transcriptoma , Sequência de Aminoácidos , Escorpiões/genética , Brasil , Peçonhas , Antivenenos , Filogenia , Hialuronoglucosaminidase/genética , Hialuronoglucosaminidase/metabolismo , Perfilação da Expressão Gênica , Venenos de Escorpião/genética , Venenos de Escorpião/metabolismo
3.
Theriogenology ; 215: 95-102, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38016306

RESUMO

The present study investigated the effects of ellagic acid, a type of polyphenol that does not have a glycan and is composed of four hydroxyl groups and two lactone functional groups, on porcine in vitro fertilization (IVF) by focusing on its anti-hyaluronidase activity. A comparative analysis of ellagic acid and apigenin, which is commonly used as a hyaluronidase inhibitor, was performed. It compared the effects of ellagic acid and apigenin on hyaluronidase activity at different concentrations. The results showed that 10, 20, and 40 µM ellagic acid strongly reduced hyaluronidase activity (P < 0.05). The addition of 20 µM ellagic acid, but not apigenin, to porcine IVF medium effectively reduced polyspermy without decreasing sperm penetration or the formation rates of male pronuclei in cumulus-free oocytes. However, neither ellagic acid nor apigenin affected the number of sperm that bound to zona pellucida (ZP) or the induction of zona hardening and protease resistance. The percentage of acrosome-reacting sperm that bound to the ZP was markedly lower in the presence of 20 µM ellagic acid than in the untreated and apigenin-treated groups, even though the antioxidant capacity of ellagic acid was weaker than that of apigenin. Furthermore, a markedly higher percentage of embryos developed to the blastocyst stage in the ellagic acid-treated group, and the apoptotic indexes of expanded blastocysts produced by the ellagic acid treatment during IVF were significantly low. Therefore, the anti-hyaluronidase effect of ellagic acid markedly suppressed the induction of the acrosome reaction in sperm that bound to the ZP, resulting in a marked decrease in polyspermy under conditions that maintained high sperm penetrability during IVF and sustainment of the developmental potency in porcine oocytes.


Assuntos
Ácido Elágico , Hialuronoglucosaminidase , Suínos , Masculino , Animais , Ácido Elágico/farmacologia , Ácido Elágico/metabolismo , Hialuronoglucosaminidase/farmacologia , Hialuronoglucosaminidase/metabolismo , Apigenina/metabolismo , Apigenina/farmacologia , Sêmen , Fertilização In Vitro/veterinária , Fertilização In Vitro/métodos , Oócitos , Zona Pelúcida , Interações Espermatozoide-Óvulo , Espermatozoides , Fertilização
4.
Sci Rep ; 13(1): 18220, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37880390

RESUMO

Spinal cord injury healing has been shown to be aided by chondroitinase ABC I (cABCI) treatment. The transport of cABCI to target tissues is complicated by the enzyme's thermal instability; however, cABCI may be immobilized on nanosheets to boost stability and improve delivery efficiency. This investigation's goal was to assess the immobilization of cABC I on graphene oxide (GO). for this purpose, GO was produced from graphene using a modified version of Hummer's process. the immobilization of cABC I on GO was examined using SEM, XRD, and FTIR. The enzymatic activity of cABC I was evaluated in relation to substrate concentration. The enzyme was then surface-adsorption immobilized on GO, and its thermal stability was examined. As compared to the free enzyme, the results showed that the immobilized enzyme had a greater Km and a lower Vmax value. The stability of the enzyme was greatly improved by immobilization at 20, 4, 25, and 37 °C. For example, at 37 °C, the free enzyme retained 5% of its activity after 100 min, while the immobilized one retained 30% of its initial activity. The results showed, As a suitable surface for immobilizing cABC I, GO nano sheets boost the enzyme's stability, improving its capability to support axonal regeneration after CNC damage and guard against fast degradation.


Assuntos
Condroitina Sulfatases , Grafite , Traumatismos da Medula Espinal , Humanos , Estabilidade Enzimática , Condroitinases e Condroitina Liases/metabolismo , Enzimas Imobilizadas/metabolismo , Condroitina Sulfatases/metabolismo , Hialuronoglucosaminidase/metabolismo , Traumatismos da Medula Espinal/terapia , Concentração de Íons de Hidrogênio , Temperatura , Cinética
5.
Cell Signal ; 109: 110790, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37392860

RESUMO

Glycocalyx coating on endothelial surface layer helps to sense shear forces and maintain endothelial function. However, the underlying mechanism of endothelial glycocalyx degradation upon disordered shear stress stimulation is not fully understood. SIRT3, a major NAD+-dependent protein deacetylases, is required for protein stability during vascular homeostasis and partly involved in atherosclerotic process. While few studies showed that SIRT3 is responsible for endothelial glycocalyx homeostasis under shear stress, the underlying mechanisms remain largely unknown. Here, we demonstrated that oscillatory shear stress (OSS) induces glycocalyx injury by activating LKB1/p47phox/Hyal2 axis both in vivo and in vitro. And O-GlcNAc modification served to prolong SIRT3 deacetylase activity and stabilized p47/Hyal2 complex. OSS could decrease SIRT3 O-GlcNAcylation to activate LKB1, further accelerated endothelial glycocalyx injury in inflammatory microenvironment. SIRT3Ser329 mutation or inhibition of SIRT3 O-GlcNAcylation strongly promoted glycocalyx degradation. On the contrary, overexpression of SIRT3 reverse glycocalyx damage upon OSS treatment. Together, our findings indicated that targeting O-GlcNAcylation of SIRT3 could prevent and/or treat diseases whereby glycocalyx injured.


Assuntos
Aterosclerose , Sirtuína 3 , Humanos , Sirtuína 3/metabolismo , Glicocálix/genética , Glicocálix/metabolismo , Endotélio/metabolismo , Aterosclerose/metabolismo , Estresse Mecânico , Hialuronoglucosaminidase/genética , Hialuronoglucosaminidase/metabolismo , Moléculas de Adesão Celular/metabolismo , Proteínas Ligadas por GPI/genética
6.
Clin Transl Med ; 13(6): e1296, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37313693

RESUMO

BACKGROUND: The cardiac repair process following a myocardial infarction is a key factor in patient prognosis. In this repair process, cardiac fibrosis takes a critically important role. Among those featured genes for fibrosis, transforming growth factor beta (TGF-ß) is known to be involved in the fibrosis in various organs. And bone morphogenetic protein (BMP)6 belongs to the TGF-ß superfamily. Although BMPs are known to play exclusive roles in cardiac repair processes, the character of BMP6 in cardiac remodelling remains unclear. PURPOSE: This study aimed to investigate how BMP6 functioned in cardiac fibrosis following myocardial infarction (MI). RESULTS: In this paper, we demonstrated that BMP6 expression was upregulated after myocardial infarction in wild-type (WT) mice. Furthermore, BMP6-/- mice showed a more significant decline in cardiac function and lower survival curves after MI. An enlarged infarct area, increased fibrosis and more pronounced inflammatory infiltration were observed in BMP6-/- mice compared to WT mice. The expression of collagen I, collagen III and α-SMA was increased in BMP6-/- mice. In vitro, through gain-of-function and loss-of-function experiments, it was demonstrated that BMP6 decreases collagen secretion in fibroblasts. Mechanistically, knocking down BMP6 promoted AP-1 phosphorylation, which in turn promotes CEMIP expression, led to an acceleration in the progression of cardiac fibrosis. Finally, it was found that rhBMP6 would alleviate ventricular remodelling abnormalities after myocardial infarction. CONCLUSION: Therefore, BMP6 may be a novel molecular target for improving myocardial fibrosis and cardiac function after myocardial infarction.


Assuntos
Proteína Morfogenética Óssea 6 , Hialuronoglucosaminidase , Infarto do Miocárdio , Fator de Transcrição AP-1 , Animais , Camundongos , Colágeno Tipo I , Modelos Animais de Doenças , Coração , Infarto do Miocárdio/genética , Fator de Transcrição AP-1/metabolismo , Proteína Morfogenética Óssea 6/genética , Hialuronoglucosaminidase/metabolismo
7.
Biomed Pharmacother ; 165: 115043, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37364478

RESUMO

HYBID is a new hyaluronan-degrading enzyme and exists in various cells of the human body. Recently, HYBID was found to over-express in the osteoarthritic chondrocytes and fibroblast-like synoviocytes. According to these researches, high level of HYBID is significantly correlated with cartilage degeneration in joints and hyaluronic acid degradation in synovial fluid. In addition, HYBID can affect inflammatory cytokine secretion, cartilage and synovium fibrosis, synovial hyperplasia via multiple signaling pathways, thereby exacerbating osteoarthritis. Based on the existing research of HYBID in osteoarthritis, HYBID can break the metabolic balance of HA in joints through the degradation ability independent of HYALs/CD44 system and furthermore affect cartilage structure and mechanotransduction of chondrocytes. In particular, in addition to HYBID itself being able to trigger some signaling pathways, we believe that low-molecular-weight hyaluronan produced by excess degradation can also stimulate some disease-promoting signaling pathways by replacing high-molecular-weight hyaluronan in joints. The specific role of HYBID in osteoarthritis is gradually revealed, and the discovery of HYBID raises the new way to treat osteoarthritis. In this review, the expression and basic functions of HYBID in joints were summarized, and reveal potential role of HYBID as a key target in treatment for osteoarthritis.


Assuntos
Ácido Hialurônico , Osteoartrite , Humanos , Ácido Hialurônico/metabolismo , Mecanotransdução Celular , Osteoartrite/tratamento farmacológico , Hialuronoglucosaminidase/metabolismo , Progressão da Doença
8.
J Biol Chem ; 299(6): 104826, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37196767

RESUMO

Cutaneous hyaluronan (HA) is depolymerized to intermediate sizes in the extracellular matrix, and further fragmented in the regional lymph nodes. Previously, we showed that the HA-binding protein involved in HA depolymerization (HYBID), also known as KIAA1199/CEMIP, is responsible for the first step of HA depolymerization. Recently, mouse transmembrane 2 (mTMEM2) with high structural similarity to HYBID was proposed to be a membrane-bound hyaluronidase. However, we showed that the knockdown of human TMEM2 (hTMEM2) conversely promoted HA depolymerization in normal human dermal fibroblasts (NHDFs). Therefore, we examined the HA-degrading activity and function of hTMEM2 using HEK293T cells. We found that human HYBID and mTMEM2, but not hTMEM2, degraded extracellular HA, indicating that hTMEM2 does not function as a catalytic hyaluronidase. Analysis of the HA-degrading activity of chimeric TMEM2 in HEK293T cells suggested the importance of the mouse GG domain. Therefore, we focused on the amino acid residues that are conserved in active mouse and human HYBID and mTMEM2 but are substituted in hTMEM2. The HA-degrading activity of mTMEM2 was abolished when its His248 and Ala303 were simultaneously replaced by the corresponding residues of inactive hTMEM2 (Asn248 and Phe303). In NHDFs, enhancement of hTMEM2 expression by proinflammatory cytokines decreased HYBID expression and increased hyaluronan synthase 2-dependent HA production. The effects of proinflammatory cytokines were abrogated by hTMEM2 knockdown. A decreased HYBID expression by interleukin-1ß and transforming growth factor-ß was canceled by hTMEM2 knockdown. In conclusion, these results indicate that hTMEM2 is not a catalytic hyaluronidase, but a regulator of HA metabolism.


Assuntos
Ácido Hialurônico , Hialuronoglucosaminidase , Animais , Humanos , Camundongos , Citocinas , Células HEK293 , Hialuronan Sintases/genética , Ácido Hialurônico/metabolismo , Hialuronoglucosaminidase/genética , Hialuronoglucosaminidase/metabolismo
9.
Front Immunol ; 14: 1125899, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37006255

RESUMO

Snake venom enzymes have a broad range of molecular targets in plasma, tissues, and cells, among which hyaluronan (HA) is outstanding. HA is encountered in the extracellular matrix of diverse tissues and in the bloodstream, and its different chemical configurations dictate the diverse morphophysiological processes in which it participates. Hyaluronidases are highlighted among the enzymes involved in HA metabolism. This enzyme has been detected along the phylogenetic tree, suggesting that hyaluronidases exert multiple biological effects on different organisms. Hyaluronidases have been described in tissues, blood and snake venoms. Snake venom hyaluronidases (SVHYA) contribute to tissue destruction in envenomations and are called spreading factors since their action potentiates venom toxin delivery. Interestingly, SVHYA are clustered in Enzyme Class 3.2.1.35 together with mammalian hyaluronidases (HYAL). Both HYAL and SVHYA of Class 3.2.1.35 act upon HA, generating low molecular weight HA fragments (LMW-HA). LMW-HA generated by HYAL becomes a damage-associated molecular pattern that is recognized by Toll-like receptors 2 and 4, triggering cell signaling cascades culminating in innate and adaptive immune responses that are characterized by lipid mediator generation, interleukin production, chemokine upregulation, dendritic cell activation and T cell proliferation. In this review, aspects of the structures and functions of HA and hyaluronidases in both snake venoms and mammals are presented, and their activities are compared. In addition, the potential immunopathological consequences of HA degradation products generated after snakebite envenoming and their use as adjuvant to enhance venom toxin immunogenicity for antivenom production as well as envenomation prognostic biomarker are also discussed.


Assuntos
Hialuronoglucosaminidase , Toxinas Biológicas , Animais , Hialuronoglucosaminidase/metabolismo , Ácido Hialurônico/metabolismo , Filogenia , Venenos de Serpentes , Mamíferos/metabolismo
10.
Autophagy ; 19(8): 2318-2337, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36843263

RESUMO

Impaired activities and abnormally enlarged structures of endolysosomes are frequently observed in Alzheimer disease (AD) brains. However, little is known about whether and how endolysosomal dysregulation is triggered and associated with AD. Here, we show that vacuolar ATPase (V-ATPase) is a hub that mediates proteopathy of oligomeric amyloid beta (Aß) and hyperphosphorylated MAPT/Tau (p-MAPT/Tau). Endolysosomal integrity was largely destroyed in Aß-overloaded or p-MAPT/Tau-positive neurons in culture and AD brains, which was a necessary step for triggering neurotoxicity, and treatments with acidic nanoparticles or endocytosis inhibitors rescued the endolysosomal impairment and neurotoxicity. Interestingly, we found that the lumenal ATP6V0C and cytosolic ATP6V1B2 subunits of the V-ATPase complex bound to the internalized Aß and cytosolic PHF-1-reactive MAPT/Tau, respectively. Their interactions disrupted V-ATPase activity and accompanying endolysosomal activity in vitro and induced neurodegeneration. Using a genome-wide functional screen, we isolated a suppressor, HYAL (hyaluronidase), which reversed the endolysosomal dysfunction and proteopathy and alleviated the memory impairment in 3xTg-AD mice. Further, we found that its metabolite hyaluronic acid (HA) and HA receptor CD44 attenuated neurotoxicity in affected neurons via V-ATPase. We propose that endolysosomal V-ATPase is a bona fide proteotoxic receptor that binds to pathogenic proteins and deteriorates endolysosomal function in AD, leading to neurodegeneration in proteopathy.Abbreviations: AAV, adeno-associated virus; Aß, amyloid beta; AD, Alzheimer disease; APP, amyloid beta precursor protein; ATP6V0C, ATPase H+ transporting V0 subunit c; ATP6V1A, ATPase H+ transporting V1 subunit A; ATP6V1B2, ATPase H+ transporting V1 subunit B2; CD44.Fc, CD44-mouse immunoglobulin Fc fusion construct; Co-IP, co-immunoprecipitation; CTSD, cathepsin D; HA, hyaluronic acid; HMWHA, high-molecular-weight hyaluronic acid; HYAL, hyaluronidase; i.c.v, intracerebroventricular; LMWHA, low-molecular-weight hyaluronic acid; NPs, nanoparticles; p-MAPT/Tau, hyperphosphorylated microtubule associated protein tau; PI3K, phosphoinositide 3-kinase; V-ATPase, vacuolar-type H+-translocating ATPase; WT, wild-type.


Assuntos
Doença de Alzheimer , ATPases Vacuolares Próton-Translocadoras , Camundongos , Animais , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo , Hialuronoglucosaminidase/metabolismo , Ácido Hialurônico , Fosfatidilinositol 3-Quinases/metabolismo , Autofagia , Proteínas tau/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Proteínas de Transporte , Camundongos Transgênicos , Modelos Animais de Doenças
11.
Molecules ; 28(3)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36770671

RESUMO

Minimally invasive hyaluronan (HA) tissue fillers are routinely employed to provide tissue projection and correct age-related skin depressions. HA fillers can advantageously be degraded by hyaluronidase (HAase) administration in case of adverse events. However, clear guidelines regarding the optimal dosage and mode of administration of HAase are missing, leaving a scientific gap for practitioners in their daily practice. In this study, we implemented a novel rheological procedure to rationally evaluate soft tissue filler degradability and optimize their degradation kinetics. TEOSYAL RHA® filler degradation kinetics in contact with HAase was monitored in real-time by rheological time sweeps. Gels were shown to degrade as a function of enzymatic activity, HA concentration, and BDDE content, with a concomitant loss of their viscoelastic properties. We further demonstrated that repeated administration of small HAase doses improved HA degradation kinetics over large single doses. Mathematical analyses were developed to evaluate the degradation potential of an enzyme. Finally, we tuned the optimal time between injections and number of enzymatic units, maximizing degradation kinetics. In this study, we have established a scientific rationale for the degradation of HA fillers by multidose HAase administration that could serve as a basis for future clinical management of adverse events.


Assuntos
Preenchedores Dérmicos , Ácido Hialurônico , Ácido Hialurônico/metabolismo , Hialuronoglucosaminidase/metabolismo , Injeções Subcutâneas , Reologia
12.
Osteoarthritis Cartilage ; 31(7): 884-893, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36720425

RESUMO

OBJECTIVE: Osteoarthritis (OA) remains clinically challenging. Regular physical exercise improves symptoms though it is unclear whether exercise influences cartilage at the molecular level. Thus, we aimed to determine the effect of acute loading on gene expression and glycosaminoglycan (GAG) content in human OA cartilage. DESIGN: Patients with primary knee OA participated in this single-blind randomised controlled trial initiated 3.5 h prior to scheduled joint replacement surgery with or without loading by performing one bout of resistance exercise (one-legged leg press). Cartilage from the medial tibia condyle was sampled centrally, under the meniscus, and from peripheral osteophytes. Samples were analysed for gene expression by real-time reverse transcriptase polymerase chain reaction, and hyaluronidase-extracted matrix was analysed for GAG composition by immuno- and dimethyl-methylene blue assays. RESULTS: Of 32 patients randomised, 31 completed the intervention: mean age 69 ± 7.5 years (SD), 58% female, BMI 29.4 ± 4.4 kg/m2. Exercise increased chondroitin sulphate extractability [95% CI: 1.01 to 2.46; P = 0.0486] but cartilage relevant gene expression was unchanged. Regionally, the submeniscal area showed higher MMP-3, MMP-13, IGF-1Ea, and CTGF, together with lower lubricin and COMP expression compared to the central condylar region. Further, osteophyte expression of MMP-1, MMP-13, IGF-1Ea, and TGF-ß3 was higher than articular cartilage and lower for aggrecan, COMP, and FGF-2. Hyaluronidase-extracted matrix from central condylar cartilage contained more GAGs but less chondroitin sulphate compared to submeniscal cartilage. CONCLUSION: Acute exercise had minor influence on cartilage GAG dynamics, indicating that osteoarthritic cartilage is not significantly affected by acute exercise. However, the regional differences suggest a chronic mechanical influence on human cartilage. GOV REGISTRATION NUMBER: NCT03410745.


Assuntos
Cartilagem Articular , Osteoartrite do Joelho , Humanos , Feminino , Pessoa de Meia-Idade , Idoso , Masculino , Glicosaminoglicanos/metabolismo , Osteoartrite do Joelho/genética , Osteoartrite do Joelho/metabolismo , Metaloproteinase 13 da Matriz/metabolismo , Sulfatos de Condroitina/farmacologia , Cartilagem Articular/metabolismo , Hialuronoglucosaminidase/genética , Hialuronoglucosaminidase/metabolismo , Hialuronoglucosaminidase/farmacologia , Método Simples-Cego , Expressão Gênica
13.
Cell Prolif ; 56(1): e13320, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35920005

RESUMO

OBJECTIVE: Different strategies for epithelial cell isolation significantly affect the viability and physiological properties of primary cells. Trypsin digestion, a conventional method, causes collateral damage owing to its strong digestive potential. To better preserve the physiological properties of epithelial tissues, we aimed to develop a modified method (hyaluronidase and collagenase I combination) for primary cell isolation. METHOD: We used conventional and modified methods to compare cell viability, morphology and stemness. Additionally, we investigated the passaging stability of epithelial cells and their capacity for organoid formation. Finally, we compared the two methods for isolating urothelial, oesophageal, lingual, and epidermal epithelial cells. RESULT: Gingival epithelial cells obtained using the modified method had higher viability, better morphology and stronger stemness than those obtained using the conventional method. Additionally, primary cells obtained using the modified method were stably passaged. Regarding organoid culture, adopting the modified method led to a significant increase in the growth rate and expression of the stem cell markers cytokeratin (CK)-19 and Ki-67. Furthermore, the modified method outperformed the conventional method for isolating urothelial, epidermal, oesophageal and lingual epithelial cells. CONCLUSION: We demonstrated that the combination of hyaluronidase and collagenase I outperformed trypsin in preserving the physiological properties of primary cells and organoid formation. The modified method could be broadly applied to isolate different types of epithelial cells and facilitate studies on organoids and tissue engineering.


Assuntos
Células Epiteliais , Hialuronoglucosaminidase , Hialuronoglucosaminidase/metabolismo , Tripsina/metabolismo , Separação Celular/métodos , Células Epiteliais/metabolismo , Colagenases/metabolismo
14.
FEBS J ; 290(16): 3946-3962, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-35997767

RESUMO

CEMIP (cell migration-inducing protein), also known as KIAA1199 or HYBID, is a protein involved in the depolymerisation of hyaluronic acid (HA), a major glycosaminoglycan component of the extracellular matrix. CEMIP was originally described in patients affected by nonsyndromic hearing loss and has subsequently been shown to play a key role in tumour initiation and progression, as well as arthritis, atherosclerosis and idiopathic pulmonary fibrosis. Despite the vast literature associating CEMIP with these diseases, its biology remains elusive. The present review article summarises all the major scientific evidence regarding its structure, function, role and expression, and attempts to cast light on a protein that modulates EMT, fibrosis and tissue inflammation, an unmet key aspect in several inflammatory disease conditions.


Assuntos
Hialuronoglucosaminidase , Humanos , Movimento Celular , Matriz Extracelular/metabolismo , Ácido Hialurônico/metabolismo , Hialuronoglucosaminidase/genética , Hialuronoglucosaminidase/metabolismo
15.
Food Funct ; 14(1): 319-334, 2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36503930

RESUMO

An upsurge in early onset of photoaging due to repeated skin exposure to environmental stressors such as UV radiation is a challenge for pharmaceutical and cosmeceutical divisions. Current reports indicate severe side effects because of chemical or synthetic inhibitors of matrix metalloproteases (MMPs) in anti-skin aging cosmeceuticals. We evaluated the adequacy of bixin, a well-known FDA certified food additive, as a scavenger of free radicals and its inhibitory mechanism of action on MMP1, collagenase, elastase, and hyaluronidase. The anti-skin aging potential of bixin was evaluated by several biotechnological tools in silico, in vitro and in vivo. Molecular docking and simulation dynamics studies gave a virtual insight into the robust binding interaction between bixin and skin aging-related enzymes. Absorbance and fluorescence studies, enzyme inhibition assays, enzyme kinetics and in vitro bioassays of human dermal fibroblast (HDF) cells highlighted bixin's role as a potent antioxidant and inhibitor of skin aging-related enzymes. Furthermore, in vivo protocols were carried out to study the impact of bixin administration on UVA induced photoaging in C57BL/6 mice skin. Here, we uncover the UVA shielding effect of bixin and its efficacy as a novel anti-photoaging agent. Furthermore, the findings of this study provide a strong foundation to explore the pharmaceutical applications of bixin in several other biochemical pathways linked to MMP1, collagenase, elastase, and hyaluronidase.


Assuntos
Corantes de Alimentos , Dermatopatias , Animais , Humanos , Camundongos , Colagenases , Fibroblastos/metabolismo , Hialuronoglucosaminidase/metabolismo , Metaloproteinase 1 da Matriz/genética , Metaloproteinase 1 da Matriz/metabolismo , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , Elastase Pancreática , Raios Ultravioleta/efeitos adversos
16.
J Control Release ; 353: 380-390, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36464062

RESUMO

Microneedles (MNs) with enhanced delivery efficiency have revolutionized the transdermal drug delivery system for treating systemic illness. However, the bioavailability of MNs was still far from the clinical requirements by only overcoming the stratum corneum barrier. Herein, hyaluronidase (HAase)-powered MNs were developed as a top-down permeation-enhancement strategy to hijack the sequential transdermal barriers for improved bioavailability. HAase MNs with robust mechanical strength showed excellent skin penetration ability and significantly enhanced the transdermal delivery efficacy of macromolecular drugs as compared to that of HAase-absent MNs, resulting in considerable effect to subcutaneous injection in terms of biodistribution, bioavailability, and therapeutical efficacy. As evidenced from the distribution of trypan blue and fluorescence underlying skin, the positive effects exerted by HAase MNs could be ascribed to the depolymerization of HA that would loosen the subcutaneous space and destruct the extracellular matrix barrier to promote drug diffusion and permeation in larger area and greater depth. Notably, the transient interconversion of keratin from α-helix to ß-sheet that might assist the drug residues on the skin surface permeate across the stratum corneum during administration might be another reason not to be ignored. As a labor-saving strategy, HAase-powered MNs offers a promising and painless administration route for macromolecules.


Assuntos
Hialuronoglucosaminidase , Agulhas , Hialuronoglucosaminidase/metabolismo , Distribuição Tecidual , Administração Cutânea , Pele/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Preparações Farmacêuticas/metabolismo
17.
Toxicol In Vitro ; 86: 105511, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36336209

RESUMO

Chronic exposure of skin to ultraviolet (UV) radiation is responsible for skin ageing, which includes degradation of the epidermal and dermal layers. Filtering UV light is key in the sunscreen industry. We studied the effects of organic UV filters on hyaluronan (HA) metabolism and skin hydration in human HaCaT keratinocytes. The gene expression of HA receptors, HA synthase (HAS), hyaluronidase (HYAL), and water channel aquaporin 3 (AQP3) was evaluated by quantitative RT-PCR. The state of oxidative stress was determined by measuring the intracellular levels of reactive oxygen species (ROS). The results showed that five organic UV filters reduced the extracellular contents of HA, and a phosphatidylinositol 3-kinase (PI3K) inhibitor partially restored the decreased HA levels after octinoxate, octocrylene, and oxybenzone treatment. The expression levels of HA receptors, including cluster of differentiation 44 (CD44), receptor for hyaluronic acid-mediated motility (RHAMM), and toll-like receptors (TLRs), were determined. Avobenzone, octinoxate, oxybenzone, and padimate O exerted inhibitory effects on RHAMM expression. Oxybenzone led to a significant increase in CD44 and AQP3 expression. Both octinoxate and octocrylene increased TLR4 expression but decreased ROS accumulation by activating the PI3K pathway. However, the organic UV filters differentially regulated the mRNA expression of HAS and HYAL. Taken together, these results suggest that certain organic UV filters regulate HA metabolism in human keratinocytes in a PI3K pathway-dependent manner.


Assuntos
Ácido Hialurônico , Fosfatidilinositol 3-Quinase , Humanos , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Queratinócitos , Raios Ultravioleta , Hialuronoglucosaminidase/metabolismo
18.
J Microbiol Biotechnol ; 33(2): 235-241, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36524342

RESUMO

Hyaluronidase (HAase) can enhance drug diffusion and dissipate edema by degrading hyaluronic acid (HA) in the extracellular matrix into unsaturated HA oligosaccharides in mammalian tissues. Microorganisms are recognized as valuable sources of HAase. In this study, a new hyaluronate lyase (HAaseD) from Bacillus sp. CQMU-D was expressed in Escherichia coli BL21, purified, and characterized. The results showed that HAaseD belonged to the polysaccharide lyase (PL) 8 family and had a molecular weight of 123 kDa. HAaseD could degrade chondroitin sulfate (CS) -A, CS-B, CS-C, and HA, with the highest activity toward HA. The optimum temperature and pH value of HAaseD were 40°C and 7.0, respectively. In addition, HAaseD retained stability in an alkaline environment and displayed higher activity with appropriate concentrations of metal ions. Moreover, HAaseD was an endolytic hyaluronate lyase that could degrade HA to produce unsaturated HA oligosaccharides. Together, our findings indicate that HAaseD from Bacillus sp. CQMU-D is a new hyaluronate lyase and with excellent potential for application in industrial production.


Assuntos
Bacillus , Animais , Bacillus/genética , Polissacarídeo-Liases/metabolismo , Hialuronoglucosaminidase/metabolismo , Ácido Hialurônico/metabolismo , Clonagem Molecular , Oligossacarídeos/metabolismo , Concentração de Íons de Hidrogênio , Especificidade por Substrato , Mamíferos/metabolismo
19.
Adv Gerontol ; 36(6): 803-809, 2023.
Artigo em Russo | MEDLINE | ID: mdl-38426916

RESUMO

Determination the activity of the genes of sirtuin-1, hyaluronidase, TGF-ß cytokine, calreticulin in the process of replicative aging of human fibroblasts in vitro and the effect of hyaluronan preparations with gold nanoparticles on the activity of replicative cell aging. Compared the expression of proteins of the studied genes using specific markers at 7 and 14 passages of cultivation of fibroblasts isolated from human skin, without drugs and in the presence of drugs in the growth medium. This work shows a decrease in the activity of the sirtuin 1 gene and an increase in the expression of hyaluronidase in the process of replicative aging of human fibroblasts. Found a means of slowing down replicative aging by activating the SIRT-1 gene and reducing the activity of hyaluronidase in action in the growth medium of hyaluronan preparations with gold nanoparticles. The discussed variants of cell transitions to the pathological state, caused by replicative aging and the mechanisms of slowing down the replicative aging of human fibroblasts.


Assuntos
Ácido Hialurônico , Nanopartículas Metálicas , Humanos , Ácido Hialurônico/farmacologia , Ouro/farmacologia , Ouro/metabolismo , Hialuronoglucosaminidase/metabolismo , Hialuronoglucosaminidase/farmacologia , Envelhecimento/genética , Fibroblastos/metabolismo , Senescência Celular , Citocinas/metabolismo , Células Cultivadas
20.
Sci Rep ; 12(1): 19835, 2022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-36400790

RESUMO

Infantile fibrosarcoma is a rare childhood tumour that originates in the fibrous connective tissue of the long bones for which there is an urgent need to identify novel therapeutic targets. This study aims to clarify the role of the extracellular matrix component hyaluronan in the invasion of child fibroblasts and Infantile fibrosarcoma into the surrounding environment. Using nanoscale super-resolution STED (Stimulated emission depletion) microscopy followed by computational image analysis, we observed, for the first time, that invasive child fibroblasts showed increased nanoscale clustering of hyaluronan at the cell periphery, as compared to control cells. Hyaluronan was not observed within focal adhesions. Bioinformatic analyses further revealed that the increased nanoscale hyaluronan clustering was accompanied by increased gene expression of Hyaluronan synthase 2, reduced expression of Hyaluronidase 2 and CD44, and no change of Hyaluronan synthase 1 and Hyaluronidases 1, 3, 4 or 5. We further observed that the expression of the Hyaluronan synthase 1, 2 and 3, and the Hyaluronidase 3 and 5 genes was linked to reduced life expectancy of fibrosarcoma patients. The invasive front of infantile fibrosarcoma tumours further showed increased levels of hyaluronan, as compared to the tumour centre. Taken together, our findings are consistent with the possibility that while Hyaluronan synthase 2 increases the levels, the Hyaluronidases 3 and 5 reduce the weight of hyaluronan, resulting in the nanoscale clustering of hyaluronan at the leading edge of cells, cell invasion and the spread of Infantile fibrosarcoma.


Assuntos
Fibrossarcoma , Ácido Hialurônico , Humanos , Criança , Hialuronan Sintases/genética , Hialuronan Sintases/metabolismo , Ácido Hialurônico/metabolismo , Hialuronoglucosaminidase/genética , Hialuronoglucosaminidase/metabolismo , Fibrossarcoma/patologia , Fibroblastos/metabolismo , Análise por Conglomerados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...